Entrainer Selection

DDBSP – Dortmund Data Bank Software Package

DDBST - Dortmund Data Bank Software & Separation Technology GmbH Marie-Curie-Straße 10 D-26129 Oldenburg Tel.: +49 441 361819 0 support@ddbst.com www.ddbst.com

⊠ Contents

1 Introduction	3
2 Common Settings	5
3 Proposal of Alternative Separation Processes	7
4 Extractive Distillation	8
5 Azeotropic Distillation	9
6 Liquid-Liquid Extraction	10
6.1 Typical Result	11
7 Liquid-Liquid Extraction (Extended)	12
7.1 Introduction	12
7.2 Program Description	13
7.3 The Calculation	16
7.4 Results	16
8 Absorption	18
8.1 Introduction	18
8.2 Program Description	19
8.3 Data Sources	21
8.3.1 Gas Solubilities Data Bank	21
8.3.2 Vapor-liquid Equilibrium Data Bank	21
8.3.3 Predictive Soave-Redlich-Kwong	21
8.4 Result	21
9 Entrainer Results	22
9.1 Results for Extractive Distillation, Azeotropic Distillation, Extraction, and Selectivity	22
9.1.1 Limited Views	22
9.1.2 Sorting	23
9.1.3 Links	23
9.2 Result for Absorption	24
9.2.1 Limited Views	24
9.2.2 Sorting	24
9.2.3 Links	24
10 Literature	25

1 Introduction

Although conventional distillation is the most important industrial separation process, there are situations where solvent-enhanced separation, e. g. azeotropic distillation, extractive distillation, liquid-liquid extraction, and absorption is a more appropriate choice. Therefore a software package was developed in order to find a suitable solvent (entrainer) for the above mentioned separation processes. The entrainer selection is based on azeotropic data, activity coefficients at infinite dilution, liquid-liquid equilibrium (LLE) and gas solubility (GLE) data. These data are taken from factual data banks as well as from thermodynamic models.

The program starts with an "Entrainer Preselection" page.

Entrainer Selection 2018	_		×			
File Help						
Entrainer Preselection Processes						
Entrainer Preselection List	- 0					
#DDB DDB Component	Compo	inents				
All Use all components	 	<u>800</u>				
	?{! 5e	et Hange				
		Clear				
Maximum Melting Point [K] of the Entrainer: 323.15 🛛 🛒 🎥 👔 Allowed Groups (define	d by mod.	UNIFAC (I	Do))			
Include Components Without Given Melting Point	nout Given	Groups				
Maximum Viscosity [mPas] of the Entrainer: 5. 🦉 🔽 Vapor Pressure Equation –						
Include Components Without Given Viscosity Information	n (STOFF))	-			
Public DDB: D:\H\DDB\ Private DDB: H:\DDBPRVIeer\						

The dialog offers the possibility to specify the component range. This is useful, if the azeotropic data are calculated with a thermodynamic model. Instead of calculating the homogeneous and heterogeneous points for many thousands of components, it can be chosen between a component range (e. g. Components 1 - 500) and a component list. The component list is a "*.stl" file, which can be easily edited e. g. in ComponentSelection.

Entraine	er Preselectio	n List	L I Components
#DDB	DDB	Component	Add
17	DDB	Aniline	
30	DDB	Nitrobenzene	
130	DDB	2-Methylphenol	?{] Set Rang
608	DDB	m-Nitrophenol	🚺 📝 Clear

The maximum melting point and the maximum viscosity allow to exclude components with non-matching conditions but this criterion fails if no melting point or viscosities (Andrade parameters) are available. For all separation processes the maximum viscosity and the maximum melting point have to be declared. The knowledge of the

melting point is necessary to avoid a crystallization of the entrainer. Low viscosities help to enhance the mass transfer and minimize the energy costs (pumping costs).

Groups (mod. UNIFAC (Do))

The "Groups" button allows to exclude components by their mod. UNIFAC (Dortmund)

groups. These groups can be seen as functional groups.

Vapor Pressure Equation	
Antoine Low - No Validation (STOFF)	-

The selection box allows to switch the pure component vapor pressure equation used. Possible entries are

Antoine Low - No Validation (STOFF)
Antoine Low - No Validation (ParamDB)
Antoine Automatic (ParamDB)
Cox (ParamDB)
DIPPR (ParamDB)
Wagner (ParamDB)

Figure 2: Vapor Pressure Equations

It is also possible to exclude ionic liquids completely. Ionic liquids often dominate the result lists because of their specific properties but may not be usable for the process under investigation.

Maximum Melting Point [K] of the Entrainer:	323.15	-
Include Components Without Given Me	lting Point	
Maximum Viscosity [mPas] of the Entrainer:	5.	-
🔽 Include Components Without Given Visa	cosity Informa	ation

3	Gro	oup Sele	ection by	Mod. U	JNIFA	_	×
-		0	R⁄-				
Oka	ay <u>C</u>	ancel	Include	All			
	1	CH2					~
	2	C=C					
•	3	ACH					
•	4	ACCH	2				
•	5	OH					
•	6	CH3O	н				
•	7	H2O					
•	8	ACOH					
•	9	CH2C	0				
	10	CHO					
•	11	CCOO					
•	12	HCOO					
✓	13	CH2O					
✓	14	CH2N	H2				
✓	15	CH2N	H				
✓	16	(C) 3	N				
✓	17	ACNH	2				
	18	PYRI	DINE				
	19	CH2C	N				
	20	COOH					
	21	CCL					
	22	CCL2					× 1

Figure 1: Functional Groups for Modified UNIFAC (Dortmund)

2 Common Settings

The processes dialog contains many identical controls for four of the five processes. Only the *Absorption* and the "LLE Extraction (Extended)" page is different.

Extractive Distillation Azeotropic Distillation Extraction Absorption Selectivity LLE Extraction (Extended)
Image: Component 1 31 Benzene Vapor Pressure [kPa]: 36.18 (by Antoine Low - No Validation (from STOFF)) Image: Component 2 50 Cyclohexane Vapor Pressure [kPa]: 36.25 (by Antoine Low - No Validation (from STOFF)) Image: Vapor Pressure [kPa]: 36.25 (by Antoine Low - No Validation (from STOFF)) Image: Vapor Pressure [kPa]: 323.15 Image: Vapor Pressure [kPa]: 101.325
Minimum Separation Factor at Infinite Dilution (α ₁₂ or inverse): 1.5 Minimum Vapor Pressure Difference [kPa] Entrainer - Binary Mixture: -10 (> 0 kPa -> Reverse Extr. Dist.)
Ignore components without boiling point data Activity Coefficient Data Source mod. UNIFAC (Dortmund) ▼ Imod. UNIFAC (Dortmund) ▼ Imod. UNIFAC (Dortmund) ▼
License Server: Success Entrainer Selection

After specifying the binary separation problem (component 1 and 2), the vapor pressures or boiling points of the components are shown, depending on the chosen system temperature or pressure. The component selection

(**<u>Component 1</u>**) is performed by the (DDB-) standard program ComponentSelection. The button allows to perform a search in the Dortmund Data Bank for the pure component properties of the component.

Activity Coefficient Data Sou	rce
DDB Access	
	and aze
en mod. UNIFAC (Dortmund)	
mod. UNIFAC (Lyngby)	
ASOG	
ic MOSCED 1984	B: K:\I
MOSCED 2005	on pronte
NIST-mod. UNIFAC	

Azeotropic Information Data S	ource
DDB Access 💌	
otr DDB Access	or wor:
mod. UNIFAC (Dortmund) mod. UNIFAC (Lyngby)	ntraine
ASOG D NIST-mod. UNIFAC	

- 1	LE Data Source
	DDB Access 🔹
	DDB Access

The data sources for the azeotropic data and the activity coefficients at infinite dilution have to be chosen. The LLE data are

currently always taken from the Dortmund Data Bank. If experimental data are

selected, a linear regression is used to estimate the values for the separation factor or selectivity and the azeotropic temperature for the given system pressure. The calculation with five different thermodynamic

models (group contribution methods) is possible: UNIFAC, mod. UNIFAC (Dortmund), mod. UNIFAC (Lyngby), ASOG, and NIST-modified UNIFAC (Dortmund).

Depending on the chos	en separation proce	ess, the user has to	define further in	nput parameters:
Depending on the ends	en separation proe	000, me aber mab to		ipar parameters.

Process	Input
Extractive Distillation	minimum separation factor at infinite dilution, boiling point (isobaric case) or vapor pressure difference (isothermal case) between entrainer and binary system
Azeotropic Distillation	selection of the new introduced azeotrope (binary or ternary), model for the calculation of the virial coefficients
Extraction	minimum selectivity at infinite dilution

If the program is finished the data finally used are stored and automatically entered in the next run.

3 Proposal of Alternative Separation Processes

In some cases the components can be separated without introducing a third component. The program package first checks the VLE behavior. After the evaluation a proposal with the alternative separation process is given before the entrainer selection starts.

- zeotropic behavior \Rightarrow ordinary distillation
- formation of a heterogeneous azeotrope \Rightarrow heterogeneous azeotropic distillation
- zeotropy at high/low pressures \Rightarrow vacuum (pressure) distillation
- strong pressure dependence of azeotropic composition \Rightarrow pressure swing distillation

4 Extractive Distillation

With the help of saturation vapor pressures 1 and activity coefficients at infinite dilution 1 the separation factor at infinite dilution 1 for the binary system can be calculated:

$$\alpha_{12}^{\infty} = \frac{\gamma_1^{\infty} P_1^s}{\gamma_2^{\infty} P_2^s}$$

The entrainer should alter the activity coefficients of the components to a different extend, in order to reach separation factors far from 1. Since the entrainer should not introduce new azeotropes, the boiling point or vapor pressure difference between entrainer and binary mixture must be sufficient. For a convenient recovery of the entrainer its boiling point must usually be sufficiently higher (e.g., $\Delta T = 40$ K) than for any component of the mixture to be separated. Recent investigations have demonstrated the use of low-boiling solvents in so-called "reverse extractive distillation" processes, but as the amount of solvent has to be increased enormously to ensure a sufficient liquid concentration of the entrainer. Moreover, the enthalpy of evaporation affects the energy balance of the process negatively. Thus, this kind of process will probably only be competitive when no suitable high-boiling solvent is available.

It is also possible to switch off the boiling point/vapor pressure condition when the user puts in the value 0. This allows to find in one step entrainers both for extractive distillation and reverse extractive distillation.

If the criteria melting point, viscosity and boiling point or vapor pressure difference are fulfilled, all solvents are chosen which show a sufficient separation factor. Additionally it will be checked, if the new solvents show zeotropic behavior with the components to be separated.

5 Azeotropic Distillation

For the azeotropic distillation, there are two different processes available. On the one hand, entrainers are chosen which introduce at least one further extreme-boiling binary azeotrope. On the other hand, entrainers are selected which introduce a low-boiling ternary heterogeneous azeotrope.

Tab.1 Criteria for solvents when components 1 and 2 form a pressure maximum azeotrope or no azeotrope. Case A Case B Introduction of at least one further Introduction of a low-boiling ternary • • binary azeotrope with pressure azeotrope maximum homogeneous oder heterogeneous heterogeneous • for a given pressure: for a given pressure: $T_{az.1-3}$ or $T_{az.2-3} < T_{az.1-2}$ - 2.0 K $T_{az.1-2-3} < T_{az.1-2}$ - 2.0 K for a given temperature: for a given temperature: • • $P_{az.1-3}$ or $P_{az.2-3} > P_{az.1-2} + 20$ mmHg $P_{az.1-2-3} > P_{az.1-2} + 20 \text{ mmHg}$

 Tab.2
 Criteria for solvents when components 1 and 2 form a pressure minimum azeotrope

Case A	<u> </u>	Case B
•	Introduction of at least one further	there are no ternary heterogeneous azeotropes with
	binary azeotrope with pressure minimum	pressure minimum!
•	homogeneous	
•	for a given pressure:	Program stops.
	$T_{az.l-3}$ or $T_{az.2-3} < T_{az.l-2} + 2.0$ K	
•	for a given temperature:	
	$P_{az.1-3}$ or $P_{az.2-3} > P_{az.1-2}$ - 20 mmHg	

In all cases, the method for calculating the fugacity coefficients must be specified (ideal, Tsonopoulos or Hayden and O'Connell), in order to consider the vapor phase reality.

6 Liquid-Liquid Extraction

The azeotropic data source is only required for checking the azeotropy of system 1-2 (components to be separated). In analogy to the separation factor for the extractive distillation, the extraction process demands a

minimum selectivity $S_{ij}^{\infty} = \frac{\gamma_i^{\infty}}{\gamma_j^{\infty}}$ of the entrainer at infinite dilution: $S_{ij} \gg 1$ or $S_{ij} \ll 1$

For selectivities higher than 1 ($S_{ij} \gg 1$), the solubility of component 1 in the extractive agent (component 3) is higher than the solubility of component 2 in the solvent. In this case, the binary system 1 - 3 should have a miscibility gap. This is checked by using the LLE data bank. If LLE data are stored, the data set nearest to the system temperature is chosen, when the following options are fulfilled:

 $\left|T_{LLE} - T_{system}\right| \le 10K$ and $P_{LLE} < 50 \, bar$

It is also possible to show binary and ternary LLE-diagrams for all selected solvents. Figure 2 shows this for the system water – ethanol – benzene.

Fig.2 LLE data for the system water - ethanol - benzene

A good method for estimating the solubility (capacity) of the components to be separated is using activity coefficients at infinite dilution. The reciprocal value of the activity coefficient at infinite dilution can be taken as a measure for the capacity (:

$$k_i^{\infty} = \frac{1}{\gamma_i^{\infty}}$$

The higher the capacity the more of the component to be extracted can be taken with the solvent. Since it is desirable to have both a high selectivity and a high capacity, it is possible to compare all the selected solvents in

a capacity – selectivity diagram (Figure 3). In this example solvent C is the most suitable entrainer regarding high capacity and high selectivity.

Fig. 3 Capacity – selectivity diagram for a given separation problem with the possible selective solvents A, B or C

Moreover, the densities of the pure components are given in the result file. If 2 liquid phases are formed, it is desirable to have a high difference in density between the 2 phases in order to have an easy phase splitting. Also the surface tensions are important factors for the design of extraction columns, since they can be used to calculate the boundary surface tension.

6.1 Typical Result

The binary mixture of acetone and ethyl acetate can be separated by liquid-liquid extraction with water as extractant.

The selectivity of water is

$$\frac{\gamma_{Ethyl \, acetate}^{\infty}}{\gamma_{Acetone}^{\infty}} = 10.74$$

and the capacities are

$$\frac{1}{\gamma_{Ethyl \ acetate}^{\infty}} = 0.0125257$$
$$\frac{1}{\gamma_{Acetone}^{\infty}} = 0.134626$$

Water and ethyl acetate are not completely miscible.

Entrainer Selection

7 Liquid-Liquid Extraction (Extended)

7.1 Introduction

The "Liquid-Liquid Extraction (Extended)" program adds many new features to the solvent selection for liquidliquid extraction, like, for example, the search for solvent mixtures or the use of experimental ternary and quaternary liquid-liquid-equilibria. Additionally, the density difference between the two liquid phases is calculated and the program estimates how difficult it would be to separate all components by distillation after the extraction step.

In comparison to the old program this software package does not only rely on the activity coefficient at infinite dilution for the solvent selection, but it also uses the actual distribution coefficients of the different components between the two liquid phases. The distribution coefficients show a more accurate description of the reality and can be directly used to estimate the value of the solvents for the given separation problems.

7.2 **Program Description**

Entrainer Select	tion 2016								X
<u>F</u> ile <u>H</u> elp									
Entrainer Preselection	on Processes								
Extractive Distillatio	n Azeotropic Dist	illation Extra	action Abso	rption Selectiv	ity LLE Ext	action (Extended)			
🔽 System (Experimer	ntal Data Bases: 21	l Components,	I Predictive M	ethods: 2-4 Com	ponents) —				1
DDB Number	Remove? Cor	nponent	Formula M	lolecular Weight	Diluted?			∃ Add Compo	nent
1 [31]	Remove Ber	nzene	C6H6 7	8.1136					
2 [50]	Remove Cyc	clohexane	C6H12 8	4.1613					
								Remove All	
								₆₆ Check Param Availabilit	heter tu
Basic Settings	200					 Options Search for Solv 	vent Mixtures		
l emperature [K]	300	'	Min. Separato	or Factor 3		Calculate User	Defined Mixtures		
Pressure [kPa] (o	only EoS) [101.325					🔲 Use Weight Fra	actions for Distribut	ion Coefficients	
Database	mod. UN	NFAC (Dortmu	und) 🔻	🕚 Selectio	on Criterion				
- Weight Factors -			Preselected	d Components —					
Capacity	1	_	229 compo	nents	1.1.15	💦 Select	Calculate	/Search	
Selectivity Solvent Loss	2		j Use Ali	Lomponents (Igr	nore Listj	Default List			
Distillation	0.75	—							
Result Table Use	r Defined Mixtures		\$						
Febrent 1	Solvent 2	Mala Erad	tion Colvor	+ 1					
Solvent 1	Solvent 2	PIOLE Frac	uon solven						
Public DDB: Y:\DD	B\ Private DDB:	Y:\CONF_D	DB\						//

Figure 3: Main dialog of the liquid-liquid extraction (extended) program part

The dialog allows users to define the separation problem. Furthermore, the procedure and the weight of different properties for the selection of solvents can be influenced.

On the top of the dialog (red box) the components which should be separated can be defined either by the component selection ($\exists_{tc} \text{Add Component}$) or by a direct input of their DDB numbers. Two components are allowed if the experimental database is used. If the calculation is based on a predictive model up to 4

₆₆ Check Parameter Availability

components are possible. The <u>Availability</u> button allows the user to control if all needed parameters for the chosen model for the calculation with the given components are available. The "Diluted?" check boxes can be used to mark components which are only available in small concentrations in the feed. These components are not considered to be the primary component of the raffinate phase. This option also allows marking components which should be considered for extraction. If we look for solvents which should extract component A out of a feed consisting of A and B, A can be marked as diluted.

The "Basic Settings" (green box) allows the user to define the extraction temperature and pressure (pressure only for equations of state) and a minimum limit for the separation factor of the liquid-liquid-extraction. The fitting prediction model or experimental database (LLEDDB or ACTDDB) for the solvent selection are chosen with the drop box "database".

When prediction models are used as database the considered solvents can be defined. The program starts always

with a default list of common solvents. This list can be modified with the Belect button, or the list can be ignored and all components of the DDB are used for the solvent selection ("Use All Components (Ignore List)").

This could lead to a time consuming calculation. The Default List button resets the list.

Additional settings are given in the options box (blue box) to specify the process of solvent selection. If the option "Search for Solvent Mixtures" is activated the program tries to find suitable solvent mixtures out of the combination of the suitable pure solvents. Additional mixtures can be defined in the table "User Defined Mixtures" with the help of the DDB numbers of the two solvents and the concentration of the binary mixture. They are considered if the option "Calculate User-Defined Mixtures" is marked.

The program normally uses mole fractions to calculate the distribution coefficients and the solvent loss. It is often more realistic to use weight fractions, so this possibility is given with the option "Use Weight Fractions for Distribution Coefficients".

The quality of a solvent for the given separation is directly estimated with the help of four criteria. Each of these criteria can be weighted with the given factors (yellow box) if one of the criteria should not be considered it can be set to zero. The following criteria are used:

• Capacity

The capacity shows how easy a solvent can extract the wanted component and how much solvent is needed. For its calculation the distribution coefficients of the extracted components or, in the case of using the activity coefficient database (ACT), the inverse activity coefficient of the extracted component in the solvent are used.

$$K_i = \frac{X_{i,E}}{X_{i,R}} \qquad \qquad Sp_i = \frac{1}{\gamma_{i,S}^{\infty}}$$

• Selectivity

A high value for the solvent selectivity shows a good separation performance for the given components with a liquid-liquid extraction. The separation factors α are used for its calculation. If the ACT database is used, the quotient of the activity coefficients of the components, which are to be separated, in the solvent "Sa" is a measure for the selectivity.

$$\alpha_{ij}^{ext} = \frac{K_i}{K_j} \qquad \qquad Sa_{ij} = \frac{\gamma_{i,S}^{\infty}}{\gamma_{j,S}^{\infty}}$$

Solvent Loss

A high solvent loss to the raffinate phase leads to an inefficiency in the extraction column because this solvent has to be recycled costly. It can be estimated with the concentration of the solvent in the raffinate phase or the activity coefficient of the solvent at infinite dilution in the raffinate component.

solvent loss =
$$\frac{1}{\gamma_{S,R}^{\infty}}$$

• Distillation

After the extraction the solvent is normally separated from the other components by distillation. The program uses the worst separation factor which is estimated during the binary VLE calculations between the solvent and each component as the measure for the distillation efforts. It is considered as the bottleneck of this operation.

All these criteria are combined in the equation for the selection criterion

$$\left[\sum_{i=1}^{ne}\sum_{j=1}^{nr}\frac{K_{E(i)}}{K_{R(j)}}/(nc-1)\right]^{ws}\cdot\left[\sum_{i=1}^{ne}\frac{K_{E(i)}}{ne}\right]^{wc}\cdot\left(1-x_{S,R}\right)^{wsl}\cdot\log\left(\alpha_{iS}^{dis}\right)^{wsd}$$

with

nc = number of components

ne = number of components in the extract phase

nr = number of components in the raffinate phase

ws = weight selectivity

wc = weight capacity

- *wsl* = weight solvent loss
- *wsd* = weight distillation
- E(i) = component i in the extract phase
- R(j) = component j in the raffinate phase
- Xs, r = solvent in the raffinate phase
- $\alpha(dis)$ = Worst separation factor of a connected distillation
- K = distribution factor Xi,e/Xl,r

Higher values show always a better property of the examined solvent for this criterion. All criteria are summarized with the help of the selection criterion. The equation is shown when the button Selection Criterion is used.

The best solvent will have the highest values for this selection criterion.

button

7.3 The Calculation

During the calculation the program always estimates which of the given components will be the main component in the raffinate phase for the used solvent. It is the component which shows the least effort to migrate from the feed into the solvent and is not diluted. After that the binary LLE between this component and the solvent and the distribution of the other component/s at infinite dilution between these two liquid phases is calculated. This procedure is reasonable because most of the extraction steps will take place under this condition. Furthermore, the results for all solvents are comparable. Other mixture properties (like azeotropic behavior) are calculated for binary systems between the solvent and each of the given components. The solvent properties are also estimated for the pure solvent and the solvent mixture.

7.4 Results

[][М Г	Save Respect Viscosity Limit Respect Viscosity Limit Only Solvents with LLE Max. Viscosity (mPas) 50 Min. Flashpoint. [K] 300 Only Solvents without Homogeneous Azeotrope Only Solvents with Viscosities Only Solvents with Flash Points												
	mod. UNIFAC (Dortmund) T=300 K	Solvent			Dis Ext e	tribution ract< >Raffinat	Distribu Coeffici Mole Fra	tion ents by ctions	Separation factors	LLE Component	B/Solvent		
#	Selection Criterion	Solvent #1	Solvent #2	Conc. Solvent #1 [mole%]	A	В	К 31	K 50	K(A)/K(B)	Comp. B in extract phase [mole%]	Comp. B in raffinate phase [mole%]	Density extract phase [kg/m ³]	Density raffinate phase [kg/m³]
35		[<u>1223</u>] N-Formylmorpholine											
34	5.6882	[1160] 2-Pyrrolidone			31	50	0.67002	0.09736	6.88	9.287	95.392	1063.97	783.18
24	4.8138	[443] Triethylene glycol			31	50	0.52355	0.07006	7.47	6.998	99.885	1098.01	772.65

Azeotropic inf	ormation			Alpha Dist	illation			Solvent Pro	Solvent Properties					Solvents		
AZDType 31	AZD y 31 [mole%]	AZDType 50	AZD y 50 [mole%]	alpha for x(31)->1	alpha for x(31)->0	alpha for x(50)->1	alpha for x(50)->0	Ps [kPa] Solvent	Tm [K] Solvent	Sft. [mN/m] Solvent	Vis. [mPas] Solvent	Flash Point [K] Solvent	Lower Explosion Limit [Vol%] Solvent	Upper Explosion Limit [Vol%] Solvent	Name Solvent 1	Name Solvent 2
none		none		39.99	80.50	160.55	8.27	0.0218	295.86		7.420				N-Formylmorpholine	
none		none		57.42	9928.31	99.75	855.49	1.18E-006	266.95		40.665				Tetraethylene glycol	
none		none		72.89	121.41	152.55	39.60	0.00161	299.10		12.129				2-Pyrrolidone	

Figure 4: Result table

The "Result table" shows the results of the different databases for the solvent selection. There are some options to adapt the result sheet to the user's needs. Solvents which have a high viscosity or a low flash point can be excluded from the list. Also solvents with no information for these two properties can be suppressed. This can also be done for solvents with a homogeneous azeotrope between the solvent and one of the components. If the ACT database is used it can also happen that there is no information about the liquid-liquid equilibria. These

solvents can also be excluded. The result list can be sorted by the values of a chosen column when a left click is done on the header of the column.

The different information areas for the solvents are classified by color in the results sheet. Single red cells show a bad property of a solvent.

- the first column contains the selection criterion. The sorting of the table is related to the values in this column.
- the short solvent names and its DDB numbers are given ("Solvent" column). In a case of a binary solvent mixture the concentration of the first named solvent in the mixture is also given.
- the column "Distribution" shows which components are more likely to be extracted (left side) by the given solvent or which components will stay mainly in the raffinate phase. The component in the last column is the main raffinate component for this solvent (see calculation description).
- in the next main column the distribution coefficients of the different components are displayed.
- the separation factors are calculated in relation to the distribution coefficient of the main component of the raffinate phase.
- the column "LLE Component / Solvent" contains the information of the binary liquid-liquid equilibria between the solvent and the main component of the raffinate phase and the densities of the two liquid phases.
- the following columns ("Azeotropic information") show the azeotropic behavior at a pressure of 1 bar between the solvent and each component. If an azeotrope was detected its concentration is also given.
- the next columns ("Alpha distillation") give the separation factor for a distillation at 1 bar between the solvent and the components in their diluted regions.
- the table is closed with the solvent properties and the complete solvent names.

When the experimental database is used, no separation factors α for the distillation are estimated. The activity coefficient database uses also other values for the selectivity and capacity.

Example: The program estimated that N-Formylmorpholine is the best solvent for the separation of benzene and Cyclohexane (see Figure 2). The third main column shows that it extracts Benzene (DDB number is #DDB=31) out of Cyclohexane (#DDB=50). It shows with K=0.99660 a better distribution coefficient for the extracted benzene than the two other shown solvents and it has with 12.27 a higher separation factor. N-Formylmorpholine and Cyclohexane have a wide miscibility gap, too. The raffinate phase nearly completely exists of Cyclohexane (97.186 mole%) which results in a low solvent loss. The density difference (1119.42 kg/m³ \leftrightarrow 781.87 kg/m³) is very large, so that the phase separation between the two liquid phases should be fast. The corresponding distillation is also easy because there is no azeotropic behavior between the solvent and the components and the separation factors of the distillation are far away from one. The pure solvent properties show that the solvent is liquid and has a low viscosity.

8 Absorption

8.1 Introduction

Besides the extractive and azeotropic distillation process and liquid-liquid extraction absorption is a further important separation process widely used. The goal of the absorption process is to separate components from a gas stream by using an appropriate absorbent. Contrary to the extractive and azeotropic distillation process which use energy and a solvent the absorption and liquid-liquid extraction processes use only a solvent as separating agent.

The suitability of an entrainer depends on its ability to change the ratio of the Henry coefficients of the gases to be separated. The basic condition for an absorbent is the different solubility of the gases in the absorbent.

A further important criterion for the selection of an absorbent is a sufficient capacity.

For estimating the selectivity of an absorbent it is – in most cases – sufficient to know the separation factor at infinite dilution α_{ij}^{∞} . The separation factor can be determined by the Henry coefficients if $x_{Gas} \rightarrow 0$ by the relation

$$\alpha_{ij}^{\infty} \equiv \frac{K_{1,3}^{\infty}}{K_{2,3}^{\infty}} = \frac{H_{1,3}}{H_{2,3}}$$

Absorption exists in two types – physical and chemical. This program covers only the physical absorption because of missing equilibrium constants for the reversible chemical reaction.

8.2 Program Description

-	Extractiv	e Distillation	Azeotropic Distilla	tion Extraction	Absorption	Selectivity			parated. The
5	Compon	ents in the G	aseous Phase						election. The
C	#DDB	DDB	Component			🗦 🔤 Add 🚀 Clea	r		
	1050	DDB	Carbon dioxide			DDB/All Gases			
	1051	DDB	Methane			Statistics	Informati	on	×
						Check Data Availability	1	HPV Databank: 1065: 912 dataset	ts and 80 solvents.
	Compo	nent to be S	olved					1051: 4547 datas 80 common solve	ets and 148 solvents. ents for all gases.
	[1051]] Methane		•				GLE Databank:	
	System	n Temperatur	re [K]					1065: 1020 datas 1051: 1008 datas	ets and 152 solvents. ets and 230 solvents.
	323.1	5 🖳						152 common solv	ents for all gases.
	Minimu 5.	m Separation	n Factor at Infinite	Dilution <mark>(</mark> a ₁₂ or in	nverse)			ОК	
	Henry	Coefficient S	ource						
	PSRK					-			
						Entrainer Selection	۱		
Ī									Page 18 of 24

of both gases.

... shows an overview on available data.

Button

😴 Statistics

Search the data bank for suitable absorbents – some kind of a preview for the search.

Function ... search the Dortmund Data Bank for vapor-liquid equilibrium data and gas solubilities

Additional Datasets by Prediction							—		×	<
X Clos <u>e</u>										
System Temperature 323.15										
Solvent	Gas	Datasets	Add	d Predicte	d?	Temperature-Henry				1
1 Acetaldehyde	1051 Methane	0		Add	1					1
1 Acetaldehyde	1065 Hydrogen sulfide	0		Add	1					
2 Acetamide	1051 Methane	0		Add	1					
2 Acetamide	1065 Hydrogen sulfide	0		Add	1					
3 Acetonitrile	1051 Methane	0		Add	1					
3 Acetonitrile	1065 Hydrogen sulfide	1		Add	1	[268.15: 9.84][298.15	: 21.3	29][333.1	5: 48.0	ċ
4 Acetone	1051 Methane	1		Add	1	[293.15: 543.33][273.1	5: 513	3.04][263	15: 48	ŧ
4 Acetone	1065 Hydrogen sulfide	1		Add	1	[263.15: 6.31][298.15	: 14.	52]		١,
<									>	

This table shows the amount of available data for gas-absorbents pairs. This function is only available if a component preselection (see chapter 2, Common Settings) has been made.

The further settings are

Setting	Description
Component to be Solved	Select the gas that should be solved better in the absorbent. This determines the sorting of the results.
System Temperature	Specify the process temperature
Minimum Separation Factor at Infinite Dilution	This value reduces the size of the result list and ignores absorbents which have a low selectivity.

The separation factors are determined by binary Henry coefficients. This program retrieves the Henry constants

Gas Solubility Databank Vapor-Liquid Equilibrium Databank (low boiling substances) Gas Solubility File (free formatted file) Vapor-Liquid Equilibrium File (low boiling substances, free formatted file) PSRK UNIFAC

from

Henry Coefficient Source	Description
Dortmund Data Bank Gas Solubilities (GLE)	This data bank mainly contains experimental Henry coefficients which can be used directly. Also available Kühnen-, Ostwald-, and Bunsen-Coefficient data sets are converted.
Dortmund Data Bank Vapor-liquid Equilibria Data Bank of Low Boiling Components (HPV)	This data bank mainly contains PxT data points which have to be converted.

Henry Coefficient Source	Description
Predictive Soave-Redlich-Kwong Model	This model is an equation of state model combined with a UNIFAC-like group contribution method in the g^E mixing rule.

The program also allows reading GLE and HPV data sets from file.

8.3 Data Sources

8.3.1 Gas Solubilities Data Bank

The program searches binary data sets built of one of the gases and a single solvent. This data bank retrieval normally leads to a number of Henry constants at different temperatures. To obtain the Henry constant at the selected system temperature a regression has to be performed. If at least three Henry constants are available covering a temperature range of more than 10 K and if these Henry constants are less than 50 K away from the process temperature the Henry constant at system temperature is determined by linear interpolation or extrapolation. The maximum extrapolation is set to 25 K. If poor results of the regression are obtained (R<0.5) or if less than three points are available only direct experimental data are used. If more than a single point is available the program uses the mean value. If no exact matching points are available the program uses the nearest point if it not more than 25 K away.

The result list contains comments of the Henry constants determination procedure.

8.3.2 Vapor-liquid Equilibrium Data Bank

This data bank contains PxT data which have to be converted to Henry constants. The detailed procedure is a little bit too long for this program description but is covered in details in the thesis of Michael Krummen^{lit.4}.

8.3.3 Predictive Soave-Redlich-Kwong

This data source is a model which allows to predict Henry constants from an equation of state combined with a UNIFAC-like group contribution method in the g^E mixing rule. This model only needs critical data and interaction parameters. This allows to calculate Henry constants for approx. 1000 components. Since this calculation is rather slow it is recommended to use the Entrainer Preselection list to shorten the list of potential solvents.

8.4 Result

The program collects the Henry constants for all pairs of a gas and a suitable solvent and calculates the separation factor by the equation

$$\alpha_{ij}^{\infty} = \frac{H_{1,3}}{H_{2,3}}$$

Index $1 \rightarrow \text{Gas } 1$, index $2 \rightarrow \text{Gas } 2$, index $3 \rightarrow \text{Solvent}$, Absorbent

9 Entrainer Results

9.1 Results for Extractive Distillation, Azeotropic Distillation, Extraction, and Selectivity

Entrainer Selection - Results	- 🗆 X								
🗙 Close 🖺 Print 📴 Copy 🔚 Save 🎇 Sort 👻	Selectivity Transfer Selectivity								
Exclude from list Components without Boiling Point Information Components without Melting Point Information Components without Azeptopic Information for 1-2/1-3 Components without Azeptopic Information	nents without Viscosity Information								
Components without LLE Information	ient without Surface Tension Information								
Visible columns	le is often to								
Vapor Pressures Surface Tension Vapor Pressures Melting Point Names Selectivity Density Azeotropic Information Capacity Viscosity LLE Information									
Components to be Separated:	^								
DDB No. Name (1) 110 Methanol (2) 4 Acetone	Formula Ps [kPa] CAS No. CH4O 55.48 67-56-1 C3H6O 81.42 67-64-1								
Given System Temperature = 323.15 [K]									
Azeotropic data for system (1)-(2): hom at P = 83.52 kPa									
List of Entrainers (Extractive Distillation)									
Source of Activity Coefficients: DDB for Activity Coefficients at Infinite Dilution Source of Azeotropic Information: UNIFAC									
Table Sorted by Separation Factors									
Table Sorted by Separation Factors DDB Entrainer No.	Ps [kPa] Tm [K] Viscosity alpha(: [mPas] (T :								
DDB Entrainer No. <u>151</u> Dimethyl sulfoxide	Ps [kPa] Tm [K] Viscosity alpha(: [mPas] (T : 0.43 291.69 1.344 0.149 (:								
Table Sorted by Separation Factors DDB Entrainer No. <u>151</u> Dimethyl sulfoxide <u>60</u> Decane	Ps [kPa] Tm [K] Viscosity alpha(: [mPas] (T : 0.43 291.69 1.344 0.149 (: 0.87 243.45 0.605 5.147 (:								
Image: DDB Entrainer No. 151 Dimethyl sulfoxide 60 Decane 30 Nitrobenzene	Ps [kPa] Tm [K] Viscosity alpha(: [mPas] (T : 0.43 291.69 1.344 0.149 (: 0.87 243.45 0.605 5.147 (: 0.19 278.85 1.249 4.430 (;								
Table Sorted by Separation Factors DDB Entrainer No.	Ps [kPa] Tm [K] Viscosity alpha(: [mPas] (T : 0.43 291.69 1.344 0.149 (: 0.87 243.45 0.605 5.147 (: 0.19 278.85 1.249 4.430 (: 0.11 303.72 2.416 0.240 (: 0.07 57.5 2.150 0.051 (:								
Table Sorted by Separation Factors DDB Entrainer No.	Ps [kPa] Tm [K] Viscosity alpha(: [mPas] (T: 0.43 291.69 1.344 0.149 (: 0.87 243.45 0.605 5.147 (: 0.19 278.85 1.249 4.430 (: 0.11 303.72 2.416 0.240 (: 0.07 257.55 2.152 0.251 (: 0.99 251.42 0.679 0.255 (:								
Image: DDB Entrainer No. 151 Dimethyl sulfoxide 60 Decane 30 Nitrobenzene 293 N-Methylacetamide 433 Quinoline 227 N,N-Dimethylacetamide	Ps [kPa] Tm [K] Viscosity alpha(: [mPas] (T: 0.43 291.69 1.344 0.149 (: 0.87 243.45 0.605 5.147 (: 0.19 278.85 1.249 4.430 (: 0.11 303.72 2.416 0.240 (: 0.07 257.55 2.152 0.251 (: 0.98 251.42 0.679 0.305 (: 29.27 158 5 0.641 0.315 (:								
Image: DDB Entrainer No. Image: DDB state 151 Dimethyl sulfoxide 60 Decane 30 Nitrobenzene 293 N-Methylacetamide 433 Quinoline 227 N, N-Dimethylacetamide 11 Ethanol 284 Methyl=2-purrolidene	Ps [kPa] Tm [K] Viscosity alpha(: [mPas] (T: 0.43 291.69 1.344 0.149 (: 0.87 243.45 0.605 5.147 (: 0.19 278.85 1.249 4.430 (: 0.11 303.72 2.416 0.240 (: 0.07 257.55 2.152 0.251 (: 0.98 251.42 0.679 0.305 (: 29.37 158.65 0.641 0.315 (: 0.25 249.70 1.170 0.322 (:								
Table Sorted by Separation Factors DDB Entrainer No. 151 Dimethyl sulfoxide 60 Decane 30 Nitrobenzene 293 N-Methylacetamide 433 Quinoline 227 N,N-Dimethylacetamide 11 Ethanol 284 N-Methyl-2-pyrrolidone 235 M-Methyl-2-pyrrolidone	Ps [kPa] Tm [K] Viscosity alpha(: [mPas] (T : (T : 0.43 291.69 1.344 0.149 (: 0.87 243.45 0.605 5.147 (: 0.19 278.85 1.249 4.430 (: 0.11 303.72 2.416 0.240 (: 0.98 251.42 0.679 0.305 (: 29.37 158.65 0.641 0.315 (: 0.25 249.70 1.170 0.322 (:								

9.1.2 Sorting

This entrainer list can be arranged by different criteria:

criteria	function
selectivity	sort by selectivities
separation factor	sort by separation factors
boiling point / vapor pressure	sort by boiling points / vapor pressures
melting point	sort by melting points
surface tension	sort by surface tensions
viscosity	sort by viscosities
density	sort by densities
functional groups	sort by functional groups: about the button "functional groups" mod.
	UNIFAC (Do) main groups can be selected.
	Top: solvents which consist of the selected groups
	Middle: solvents which consist not only of the selected groups
	Bottom: solvents which cannot be incremented
component class	sort by component classes (based on mod. UNIFAC (Do) main groups):
	alkanes, aromatics, alcohols, water, ketones, esters, ethers, amides,
	halogenated compounds, unsaturated compounds, aldehydes, carbonic
	acids, other components
DDB code no.	sort by DDB code no.
azeotropic information	sort by azeotropic information
LLE information	sort by LLE information

9.1.3 Links

The result table contains two types of links (green underlined text): A mouse-click on the DDB component numbers besides the component names opens a context menu

Display Component Info Display GLE/HPV Databank Entries Display Pure Component Properties

allowing to display several further information for the solvent.

The links next to the selectivity columns are links to explanations like

Remark <*>: Extrapolated activity coefficients for at least one component

9.2 Result for Absorption

Absorption Result					-	
🗙 Clos <u>e</u> 🖺 Print 🙀 Copy 🔚 Save 👯 Sort 👻 📷 Columns 💌						
Maximum H23 Maximum Psat 1000. bar 50. kPa System Temperature +- 5.						
Selected Temperature: T= 323.15 K Data Source: GLE Databank						
List of Gases: #DDB Formula Name (1) 1065 H2S Hydrogen sulfide (2) 1051 CH4 Methane Gas to be solved is [1051] Methane						
Table sorted by separation factors.						
#DDB Entrainer (3)	α12	1/α12	Liq.Visc. [mPa*s]	Liq.Dens. [kg/m3]	Tn [K]	1 Psat (Sc [kPa]
451 Carbonic acid dim 21 Ethyl acetate	0.0352 0.0407	28.4080 24.5875	0.4614 0.3250	1030.27 864.17	278.00 189.55	23.27 < 37.99 <
108 1-Methylnaphthalene	0.0626	15.9639	1.7651	998.25	242.70	0.05 <
472 Diphenylmethane	0.0755	13.2374	1.8205	983.55	298.35	<0.01 <
315 cis-Decahydronaph	0.0860	11.6223	1.9955	874.20	230.15	0.51 <
31 Benzene	0.0962	10.4001	0.4336	847.78	278.68	36.18 <
50 Cyclohexane	0.1014	9.8620	0.6051	750.12	279.75	36.25 <
39 I-Butanol	0.1086	9.2051	1.2841	785.46	183.35	4.61 <
18 Dodecane	0.1291	7.7472	0.9177	727.79	263.59	0.12 <
129 Octano	0.1305	7.0043	0 2025	60.72	216 25	6.72
60 Decane	0.1338	6 7034	0.3025	707 63	210.35	0.74 <
<u>oo</u> becane	0.1452	0.7034	0.0040	101100	243.45	0.07
- <u></u>						
3 component/s excluded by Psat criterium.						~
Component/s evaluaded by validity range evitorium						>
						-

9.2.1 Limited Views

The list of entrainers can be filtered by an allowed maximum value of Henry constants, a maximum value of the saturated vapor pressure of the solvent, and a maximum temperature difference of the used Henry coefficients to the wanted process temperature.

9.2.2 Sorting

The sorting criteria can be all the columns from the result table:

9.2.3 Links

The result table contains two types of links (green underlined text): The Display Component Info

```
ontext menu
```

e solvent.

Display GLE/HPV Databank Entries Display Pure Component Properties

xplanation what type of Henry coefficients have been used:

Separation Factors

DDB Numbers

Surface Tensions

Melting Point Component Class

Henry13

Henry23

Saturated Pressure

Densities

Viscosities

Comments

2

```
1: Henry determined by quadratic interpolation (R>0.9)
```

```
2: Henry determined by linear extrapolation (R>0.9)
4: Henry determined by linear interpolation (R>0.9)
```

```
8: Henry determined by linear interpolation (R>0.5)
```

```
9: Henry determined by interpolation between two points.
```

10 Literature

- 1. M. Krummen, Thesis, Carl-von-Ossietzky-Universität Oldenburg (2004)
- 2. D. Gruber, Thesis, Universität Oldenburg (1999)
- 3. C. Möllmann, Thesis, Universität Oldenburg (1996)
- 4. C. Möllmann, J. Gmehling, "Auswahl selektiver Zusatzstoffe für die Rektifikation durch kombinierten Zugriff auf experimentelle und vorausberechnete Gleichgewichtsdaten," Chem.-Ing.-Tech. 69, 324 (1997)
- 5. J. Gmehling, C. Möllmann, "Synthesis of Distillation Processes Using Thermodynamic Models and the Dortmund Data Bank", Ind. Eng. Chem. Research 37, 3112-3123 (1998)
- 6. Schedemann A., "Weiterentwicklung von thermodynamischen Vorhersagemethoden als Grundlage für die Lösungsmittelauswahl bei der Flüssig-Flüssig-Extraktion und der Absorption", Thesis, C.-v.-O. Universität Oldenburg, 2013
- Gmehling J., Schedemann A., "Selection of Solvents or Solvent Mixtures for Liquid-Liquid Extraction Using Predictive Thermodynamic Models or Access to the Dortmund Data Bank", Ind.Eng.Chem.Res., 53(45), 17794-17805, 2